If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2-14j=0
a = 1; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·1·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*1}=\frac{0}{2} =0 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*1}=\frac{28}{2} =14 $
| −5(c–2)=20–5c+10 | | -(1+7x)42+6x=36 | | 4-(-x/2)=8 | | -7+w/2=-15 | | -9(m-3)=-9m+3 | | 2(3v=7)=68 | | -6x^2+384=0 | | 8.53x+64=72.7609+8x | | 8y-3=16-1(1-2y) | | 20f+5.50=75 | | -3x+1=-3 | | -(17m-12=233 | | x+12=2x+20 | | -16x^2+112x+6=0 | | 8x+12=-9x-19 | | -3.4(x-2)=9.8-4x | | 2/3(x+9)-2=12 | | -2(2x-6)=200 | | -1+4x=3x=3 | | -8y+6(y+2)=-6 | | 63=4x+11 | | -4y=-5 | | -8y+6(y+2=-6 | | 19t+2=20t+16 | | 15.86+0.12x=16.61-0.14 | | 11n-4n+3n=10 | | -8(8m-3)=88 | | 5(v+10)=95 | | -19-4b=-5b | | 4-2x+8=-4x+4-2X | | 5(4-4b)=115-15 | | 8x+12=8x−19 |